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The Hamiltonian and BRST formulations of the Nielsen–Olesen (vortex) model are
studied in two space, one time dimensions.

1. INTRODUCTION

The systems in two space, one time ((2+1)-) dimensions, i.e., the planar
systems, display a variety of peculiar quantum mechanical phenomena ranging
from massive gauge fields to soluble gravity (Forte, 1992; Jackiw, 1989; Krive
and Rozhavskii, 1987; Saint-Jameset al., 1969). These are linked to the peculiar
structure of the rotation, Lorentz and Poincare groups in (2+1)-dimensions. The
(2+1)-dimensional QED models with a Higgs potential, namely, the abelian Higgs
models involving the vector guage fieldAµ(x) with and without the topological
Chern–Simons term in two space, one time ((2+1)-) dimensions, have been of
a wide interest in the recent years (Abrikosov, 1957a,b; Banerjeeet al., 1995,
1997; Banks and Lykken, 1990; Bogomol’nyi, 1976a,b; Chenet al., 1989; Daser
et al., 1982a,b; De Vega and Schaposnik, 1976; Dunne and Trugenberger, 1991;
Fetteret al., 1989; Forte, 1992; Friedberg and Lee, 1977a,b, 1978; Ginsburg and
Landau, 1950; Jackiw, 1989; Jackobs and Rebbi, 1986; Krive and Rozhavskii,
1987; Laughlin, 1988; Leeet al., 1991; Lee and Nam, 1991; Mac Kenzie and
Wilczek, 1988; Nielsen and Olesen, 1973a,b; Saint-Jameset al., 1969; Shinet al.,
1990). Such models when considered with a CST in the action may be considered
as field-theoretical models for anyons (Banerjeeet al., 1995, 1997; Daseret al.,
1982a,b; Dunne and Trugenberger, 1991; Forte, 1992; Jackiw, 1989; Krive and
Rozhavskii, 1987; Mac Kenzie and Wilczek, 1988; Laughlin, 1988; Saint-James
et al., 1969; Shinet al., 1990). When these models are considered without a CST
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in the action but only with a Maxwell term accounting for the kinetic energy
of the vector gauge fieldAµ(x) (Abrikosov, 1957a,b; Banks and Lykken, 1990;
Bogomol’nyi, 1976a,b; Chenet al., 1989; De Vega and Schaposnik, 1976; Fetter
et al., 1989; Forte, 1992; Friedberg and Lee, 1977a,b, 1978; Ginsburg and Landau,
1950; Jackiw, 1989; Jackobs and Rebbi, 1986; Krive and Rozhavskii, 1987; Lee
et al., 1991; Lee and Nam, 1991; Nielsen and Olesen, 1973a,b; Saint-Jameset al.,
1969), they represent field-theoretical models which could be considered as ef-
fective theories of the Ginsburg–Landau-type for superconductivity (Abrikosov,
1957a,b; Banks and Lykken, 1990; Chenet al., 1989; Fetteret al., 1989; Ginsburg
and Landau, 1950). These models in (2+1)- or (3+1)-dimensions are known as the
Nielsen–Olesen (vortex) models (Bogomol’nyi, 1976a,b; De Vega and Schaposnik,
1976; Friedberg and Lee, 1977a,b, 1978; Jackobs and Rebbi, 1986; Leeet al.,
1991; Lee and Nam, 1991; Nielsen and Olesen, 1973a,b), which are in fact the
relativistic generalizations of the well-known Ginsburg–Landau phenomenologi-
cal field-theory models of superconductivity (Abrikosov, 1957a,b; Ginsburg and
Landau, 1950). Some basics of the Nielsen–Olesen (vortex) model are recapitu-
lated in the next section (Bogomol’nyi, 1976a,b; De Vega and Schaposnik, 1976;
Friedberg and Lee, 1977a,b, 1978; Jackobs and Rebbi, 1986; Leeet al., 1991; Lee
and Nam, 1991; Nielsen and Olesen, 1973a,b).

Also, the quantization of field-theory models has always been a challenging
problem. Infact, any complete physical theory is a quantum theory and the only
way of defining a quantum theory is to start with a classical theory and then to quan-
tize it. Basically there are two rather equivalent approaches for the quantization:
the canonical quantization or the Hamiltonian formulation due to Dirac (1950,
1964) and the path integral quantization due to Feynman. In the present work
we consider a consistent Hamiltonian (Dirac, 1950, 1964) and Becchi–Rouet–
Stora–Tyutin (BRST) (Becchiet al., 1974; Henneaux, 1985; Kulshreshtha, 1998;
Kulshreshtha and Kulshreshtha, 1998; Kulshreshthaet al., 1993a–c, 1994a–d,
1995; Nemeschanskyet al., 1988; Tyutin) quantization of the Nielsen–Olesen
model in (2+1)-dimensions with some specific gauge choices (Becchiet al.,
1974; Henneaux, 1985; Kulshreshtha, 1998; Kulshreshtha and Kulshreshtha, 1998;
Kulshreshthaet al., 1993a–c, 1994a–d, 1995; Nemeschanskyet al., 1988; Tyutin).

Further, in the usual Hamiltonian formulation of a gauge-invariant theory un-
der some gauge-fixing conditions, one necessarily destroys the gauge invariance
of the theory by fixing the gauge (which converts a set of first-class constraints
into a set of second-class constraints, implying a breaking of gauge invariance
under the gauge fixing). To achieve the quantization of a gauge-invariant theory
such that the gauge invariance of the theory is maintained even under gauge fixing,
one goes to a more generalized procedure called the BRST formulation (Becchi
et al., 1974; Henneaux, 1985; Kulshreshtha, 1998; Kulshreshtha and Kulshreshtha,
1998; Kulshreshthaet al., 1993a–c, 1994a–d, 1995; Nemeschanskyet al., 1988;
Tyutin). In the BRST formulation of a gauge-invariant theory, the theory is
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rewritten as a quantum system that possesses a generalized gauge invariance called
the BRST symmetry. For this, one enlarges the Hilbert space of the gauge-invariant
theory and replaces the notion of the gauge transformation, which shifts operators
by c-number functions, by a BRST transformation, which mixes operators having
different statistics. In view of this, one introduces new anticommuting variablesc
andc̄ called the Faddeev–Popov ghost and antighost fields, which are Grassmann
numbers on the classical level and operators in the quantized theory, and a commut-
ing variableb called the Nakanishi–Lautrup field (Becchiet al., 1974; Henneaux,
1985; Kulshreshtha, 1998; Kulshreshtha and Kulshreshtha, 1998; Kulshreshtha
et al., 1993a–c, 1994a–d, 1995; Nemeschanskyet al., 1988; Tyutin). In the BRST
formulation, one thus embeds a gauge-invariant theory into a BRST-invariant sys-
tem, and the quantum Hamiltonian of the system (which includes the gauge-fixing
contribution) commutes with the BRST charge operatorQ as well as anti-BRST
charge operator̄Q. The new symmetry of the quantum system (the BRST sym-
metry) that replaces the gauge invariance is maintained (even under the gauge
fixing) and hence projecting any state onto the sector of BRST and anti-BRST
invariant state yields a theory that is isomorphic to the original gauge-invariant the-
ory. The unitarity and consistency of the BRST-invariant theory described by the
gauge-fixed quantum Lagrangian is guaranteed by the conservation and nilpotency
of the BRST charge (Becchiet al., 1974; Henneaux, 1985; Kulshreshtha, 1998;
Kulshreshtha and Kulshreshtha, 1998; Kulshreshthaet al., 1993a–c, 1994a–d,
1995; Nemeschanskyet al., 1988; Tyutin).

After a brief recapitulation of the basics of the model in the next section, its
Hamiltonian formulation is considered in Section 3 and its BRST formulation is
studied in Section 4.

2. A RECAPITULATION OF SOME BASICS
OF THE NIELSEN–OLESEN MODEL

The Nielsen–Olesen model in two-space, one-time dimensions is an abelian
Higgs model defined by the action (Bogomol’nyi, 1976a,b; De Vega and
Schaposnik, 1976; Friedberg and Lee, 1977a,b, 1978; Jackobs and Rebbi, 1986;
Leeet al., 1991; Lee and Nam, 1991; Nielsen and Olesen, 1973a,b)

S =
∫

L (8,8∗, Aµ) d3x (2.1a)

L = − 1

4e2
FµνFµν + (D̃µ8

∗)(Dµ8)− V(|8|2) (2.1b)

V(|8|2) = α0+ α2|8|2+ α4|8|4 (2.1c)

= λ
(|8|2−82

0

)2
, 80 6= 0 (2.1d)
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Dµ = (∂µ + ieAµ), D̃µ = (∂µ − ieAµ) (2.1e)

Fµν = (∂µAν − ∂νAµ) (2.1f)

gµν := diag(+1,−1,−1), µ, ν = 0, 1, 2 (2.1g)

This model defined in (2+1)-dimensions as well as in (3+1)-dimensions is
widely known as the Nielsen–Olesen (vortex) model. In the present work, how-
ever, we would study this model in (2+1)-dimensions only. This model is in fact a
relativistic generalization of the well-known Ginsburg–Landau model, which is a
phenomenological field-theory model of superconductivity (Abrikosov, 1957a,b;
Ginsburg and Landau, 1950). The model is well known to possess stable, time-
independent (i.e., static), classical solutions called as the two-dimensional soli-
tons, which are in fact the topological solitons of the vortex type (Banerjeeet al.,
1995, 1997; Bogomol’nyi, 1976a,b; De Vega and Schaposnik, 1976; Dunne and
Trugenberger, 1991; Forte, 1992; Friedberg and Lee, 1977a,b, 1978; Jackiw, 1989;
Jackobs and Rebbi, 1986; Krive and Rozhavskii, 1987; Leeet al., 1991; Lee and
Nam, 1991; Nielsen and Olesen, 1973a,b; Saint-Jameset al., 1969).

In a quantum theory of the kind that we are considering here, for a specific
form of the Higgs potential which admits static solutions, in general, one could
havetwo degenerate minima—a symmetry breaking minimum and a symmetry
preserving minimum—and correspondingly the theory could have two types of
classical solutions—topological vortices with quantized magnetic flux as we have
in the Nielsen–Olesen model or Ginsburg–Landau model, where it is possible to
define a conserved topological current and a corresponding topological charge
which is quantized and is related to the topological quantum number called the
winding number, which determines the lower bound of the energy of the vor-
tex solutions (Banerjeeet al., 1995, 1997; Bogomol’nyi, 1976a,b; De Vega and
Schaposnik, 1976; Dunne and Trugenberger, 1991; Friedberg and Lee, 1977a,b,
1978; Jackobs and Rebbi, 1986; Leeet al., 1991; Lee and Nam, 1991; Nielsen
and Olesen, 1973a,b), and the other type of classical solutions are the nontopo-
logical solitons with nonvanishing but not necessarily quantized magnetic flux
(Banerjeeet al., 1995, 1997; Bogomol’nyi, 1976a,b; De Vega and Schaposnik,
1976; Dunne and Trugenberger, 1991; Friedberg and Lee, 1977a,b, 1978; Jackobs
and Rebbi, 1986; Leeet al., 1991; Lee and Nam, 1991; Nielsen and Olesen,
1973a,b).

In the Nielsen–Olesen model the fieldFµν has a simple meaning, namely, the
field F12 measures the number of vortex lines (going in the third direction) which
pass a unit square in the (12)-plane. The vortex line is identified with a dual string
and the flux of vortex lines is quantized (with the quantum (−2π/e)) (Banerjee
et al., 1995, 1997; Bogomol’nyi, 1976a,b; De Vega and Schaposnik, 1976; Dunne
and Trugenberger, 1991; Friedberg and Lee, 1977a,b, 1978; Jackobs and Rebbi,
1986; Leeet al., 1991; Lee and Nam, 1991; Nielsen and Olesen, 1973a,b). The main
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new result of this theory is the identification of the Ginsburg–Landau theory with
the static solution of the Higgs type of Lagrangian (Abrikosov, 1957a,b; Banerjee
et al., 1995, 1997; Banks and Lykken, 1990; Bogomol’nyi, 1976a,b; Chenet al.,
1989; De Vega and Schaposnik, 1976; Dunne and Trugenberger, 1991; Fetteret al.,
1989; Forte, 1992; Friedberg and Lee, 1977a,b, 1978; Ginsburg and Landau, 1950;
Jackiw, 1989; Jackobs and Rebbi, 1986; Krive and Rozhavskii, 1987; Leeet al.,
1991; Lee and Nam, 1991; Nielsen and Olesen, 1973a,b; Saint-Jameset al., 1969).

Further, in the Nielsen–Olesen model, considered with a Higgs potential
in the form of a double well potential with80 6= 0, the spontaneous symmetry
breaking takes place owing to the noninvariance of the lowest (ground) state of the
system (because80 6= 0) under the operation of the localU (1) symmetry. Also the
symmetry that is broken is still a symmetry of the system and it is manifested in a
manner other than the invariance of the lowest or ground state (80) of the system.
However, no Goldstone boson occurs here and instead the gauge field acquires a
mass through some kind of a Higgs mechanism and the symmetry is manifested
in the Higgs mode.

Also, the Nielsen–Olesen model with the parameters of the Higgs potential
chosen such that the scalar (spin zero) particle and the vector (spin one) particle
masses are equal, i.e., if we set the scalar (Higgs boson) and vector (photon) masses
to be equal, i.e.,

mHiggs= mphoton= e80

so that

V(|8|2) := 1

2
e2
(|8|2−82

0

)2
then the model reduces to the so-called Bogomol’nyi model (Banerjeeet al., 1995,
1997; Bogomol’nyi, 1976a,b; Dunne and Trugenberger, 1991) which describes a
system on the boundary between type-I and type-II superconductivity and admits
self-dual solitons (Banerjeeet al., 1995, 1997; Bogomol’nyi, 1976a,b; Dunne and
Trugenberger, 1991).

In our considerations in the present work, we would keep the Higgs potential
rather general, i.e., we would not make any specific choice for the parameters of the
potential except that they are chosen such that the potential remains a double well
potential with80 6= 0. For further details we refer to the work of Banerjeeet al.
(1995, 1997), Bogomol’nyi (1976a,b), De Vega and Schaposnik (1976), Dunne
and Trugenberger (1991), Friedberg and Lee (1977a,b, 1978), Jackobs and Rebbi
(1986), Leeet al.(1991), Lee and Nam (1991), Nielsen and Olesen (1973a,b), and
references therein.

In the next section, we consider the Hamiltonian formulation of the Nielsen–
Olesen model in (2+1)-dimensions.
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3. HAMILTONIAN FORMULATION

For considering the Hamiltonian formulation of the Nielsen–Olesen model
in the instant-form (i.e., on the hyperplanesx0 = constant), we first express the
action of the theory (2.1) in the component form, which in (2+1)-dimensions reads
as (Banerjeeet al., 1995, 1997; Bogomol’nyi, 1976a,b; De Vega and Schaposnik,
1976; Dunne and Trugenberger, 1991; Friedberg and Lee, 1977a,b, 1978; Jackobs
and Rebbi, 1986; Leeet al., 1991; Lee and Nam, 1991; Nielsen and Olesen,
1973a,b)

S=
∫

L dx0 dx1 dx2 (3.1a)

L = 1

2e2

{
(∂1A0− ∂0A1)2+ (∂2A0− ∂0A2)2− F2

12

}
+ {(∂08

∗)(∂08)+ ie(∂08
∗)A08− ieA08

∗(∂08)+ e2A2
08
∗8
}

+ {−(∂18
∗)(∂18)− ie(∂18

∗)A18+ ieA18
∗(∂18)− e2A2

18
∗8
}

+ {−(∂28
∗)(∂28)− ie(∂28

∗)A28+ ieA28
∗(∂28)− e2A2

28
∗8
}

− V(|8|2) (3.1b)

V(|8|2) = α0+ α2|8|2+ α4|α|4 (3.1c)

= λ(|8|2−82
0

)2
, 80 6= 0 (3.1d)

where all the symbols are defined in (2.1). Equations (3.1) define the theory in
the instant-form in (2+1)-dimensions. In the following, we would consider the
Hamiltonian formulation of the theory described by the action (3.1). The Euler–
Lagrange field equations of motion of the theory obtained from (3.1) are

−ie(∂µ8
∗)Aµ + e2AµAµ8∗ − ∂µ∂µ8∗ + ie∂µ(Aµ8∗)− ∂V

∂8
= 0 (3.2a)

−ieAµ(∂µ8)+ e2AµAµ8− ∂µ∂µ8− ie∂µ(Aµ8)− ∂V

∂8∗
= 0 (3.2b)

ie8∗(∂18)− ie(∂18
∗)8− 2e2A18

∗8+ 1

e2
(∂0F10− ∂2F12) = 0 (3.2c)

ie8∗(∂28)− ie(∂28
∗)8− 2e2A28

∗8+ 1

e2
(∂0F20− ∂1F12) = 0 (3.2d)

ie(∂08
∗)8− ie(∂08)8∗ + 2e2A08

∗8+ 1

e2
(∂1F01− ∂2F02) = 0 (3.2e)
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From the above equations (Eqs. (3.2)) it is easy to see that the vector current of
the theory (Jµ) is conserved, i.e.,

∂µJµ = ∂0J0+ ∂1J1+ ∂2J2 = 0 (3.3)

implying that the theory possesses (at the classical level) a vector-gauge symmetry.
The canonical momenta obtained from (3.1) are

5 := ∂L

∂(∂08)
= ∂08

∗ − ieA08
∗ (3.4a)

5∗ := ∂L

∂(∂08∗)
= ∂08+ ieA08 (3.4b)

50 := ∂L

∂(∂0A0)
= 0 (3.4c)

E1 := 51 = ∂L

∂(∂0A1)
= −1

e2
(∂1A0− ∂0A1) (3.4d)

E2 := 52 = ∂L

∂(∂0A2)
= −1

e2
(∂2A0− ∂0A2) (3.4e)

Here5,5∗,50, E1(:=51), andE2(:=52) are the momenta canonically conjugate,
respectively, to8, 8∗, A0, A1, and A2. Equations (3.4) imply that the theory
possesses one primary constraint:

χ1 = 50 ≈ 0 (3.5)

The canonical Hamiltonian density corresponding toL (3.1) is

Hc := 5(∂08)+5∗(∂08
∗)+50(∂0A0)+ E1(∂0A1)+ E2(∂0A2)− L (3.6a)

= 1

2
e2
(
E2

1 + E2
2

)+ E1(∂1A0)+ E2(∂2A0)+5∗5

+ ie(5∗A08
∗ −5A08)+ e28∗8

(
A2

1+ A2
2

)+ (∂18
∗)(∂18)

+ (∂28
∗)(∂28)+ ie{(∂18

∗)A18+ (∂28
∗)A28} − ie{(A18

∗)(∂18)

+ (A28
∗)(∂28)} + 1

2e2
F2

12 = V(|8|2) (3.6b)

After including the primary constantχ1 in the canonical Hamiltonian densityHc

(3.6) with the help of the Lagrange multiplier fieldu, the total Hamiltonian density
HT could be written as

HT := Hc+50u (3.7)
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The Hamilton’s equations obtained from the total Hamiltonian

HT =
∫
HT dx1 dx2 (3.8)

are

∂08 = ∂HT

∂5
= 5∗ − ieA08 (3.9a)

−∂05 = ∂HT

∂8
= − ie5A0+ e2

(
A2

1+ A2
2

)
8∗ − ∂1∂18

∗

− ∂2∂28
∗ + ie(∂18

∗)A1+ ie(∂28
∗)A2

+ ie∂1(A18
∗)+ ie∂2(A28

∗)+ ∂V

∂8
(3.9b)

∂08
∗ = ∂HT

∂5∗
= 5+ ieA08

∗ (3.9c)

−∂05
∗ = ∂HT

∂8∗
= ie5∗A0+ e2

(
A2

1+ A2
2

)
8− ∂1∂18− ∂2∂28

− ie(∂18)A1− ie(∂28)A2− ie∂1(A18)

− ie∂2(A28)+ ∂V

∂8∗
(3.9d)

∂0A0 = ∂HT

∂50
= u (3.9e)

−∂05
0 = ∂HT

∂A0
= −∂1E1− ∂2E2+ ie(5∗8∗ −58) (3.9f)

∂0A1 = ∂HT

∂E1
= e2E1+ ∂1A0 (3.9g)

−∂0E1 = ∂HT

∂A1
= 2e2A18

∗8+ ie(8∂18
∗ −8∗ ∂18)+ 1

e2
∂2F12 (3.9h)

∂0A2 = ∂HT

∂E2
= e2E2+ ∂2A0 (3.9i)

−∂0E2 = ∂HT

∂A2
= 2e2A28

∗8+ ie(8∂28
∗ −8∗ ∂28)− 1

e2
∂1F12 (3.9j)

∂0u = ∂HT

∂5u
= 0 (3.9k)

−∂05u = ∂HT

∂u
= 50 (3.9l)

These are the equations of motion of the theory that preserve the constraints of the
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theory in the course of time. For the Poisson bracket{ , }p of two functionsA and
B, we choose the following convention:

{A(x), B(y)}p :=
∫

dz
∑
α

[
∂A(x)

∂qα(z)

∂B(y)

∂Pα(z)
− ∂A(x)

∂pα(z)

∂B(y)

∂qα(z)

]
(3.10)

Demanding that the primary constraintχ1 be preserved in the course of time,
one obtains the secondary Gauss-law constraint of the theory as

χ2 := {χ1,HT}p = [∂1E1+ ∂2E2− ie(5∗8∗ −58)] ≈ 0 (3.11)

The preservation ofχ2 for all times does not give rise to any further constraints.
The theory is thus seen to possess only two constraintsχ1 andχ2. Further, the
matrix of the Poisson brackets of the constraintsχ1 is seen to be a null matrix,
implying that the set of constraintsχ1 is first-class and that the theory described
by (3.1) is a gauge-invariant theory. The action of the theoryS(3.1) is in fact seen
to be invariant under the time-dependent gauge transformations:

δ8 = iβ8, δ8∗ = −iβ8∗, δu = −∂0∂0β (3.12a)

δA0 = −∂0β, δA1 = −∂1β, δA2 = −∂2β (3.12b)

δ5u = δ50 = δE1 = δE2 = 0 (3.12c)

δ5 = −eβA08
∗ − iβ ∂08

∗ + i (e− 1)8∗ ∂0β (3.12d)

δ5∗ = −eβA08+ iβ ∂08− i (e− 1)8∂0β (3.12e)

whereβ = β(t, x1, x2) is a function of the coordinates.
In order to quantize the theory using Dirac’s procedure we convert the set

of first-class constraints of the theoryχi into a set of second-class constraints,
by imposing, arbitrarily, some additional constraints on the system called gauge-
fixing conditions or the gauge constraints. For this purpose, for the present the-
ory, we could choose, for example, the set of gauge-fixing conditions: (A)ρ1 =
A0 = 0 andρ2 = A1 = 0; and (B)ψ1 = A0 = 0 andψ2 = ∂1A1 = 0. Correspond-
ing to these choices of the gauge-fixing conditions, we have the following two
sets of constraints under which the quantization of the theory could be
studied:

(A) ξ1 = χ1 = 50 ≈ 0 (3.13a)

ξ2 = χ2 = [∂1E1+ ∂2E2− ie(5∗8∗ −58)] ≈ 0 (3.13b)

ξ3 = ρ1 = A0 ≈ 0 (3.13c)

ξ4 = ρ2 = A1 ≈ 0 (3.13d)
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and

(B) η1 = χ1 = 50 ≈ 0 (3.14a)

η2 = χ2 = [∂1E1+ ∂2E2− ie(5∗8∗ −58)] ≈ 0 (3.14b)

η3 = ψ1 = A0 ≈ 0 (3.14c)

η4 = ψ2 = ∂1A1 ≈ 0 (3.14d)

The matrices of the Poisson brackets among the set of constraintsξi andηi are
now seen to be nonsingular (and therefore inverible) and are omitted here for the
sake of brevity.

The Dirac bracket{ , }D of the two functionsA andB is defined as (Dirac,
1950, 1964):

{A, B}D = {A, B}p−
∫ ∫

dw dz
∑
α,β

[{A, 0α(w)}p

× [1−1
αβ (w, z)

]{0β(z), B}p
]

(3.15)

where0i are the constraints of the theory and1αβ(w, z)[={0α(w), 0β(z)}p] is the
matrix of the poisson brackets of the constraints0i . The transition to quantum the-
ory is made by the replacement of the Dirac brackets by the operator commutation
relations according to

{A, B}D → (−i )[ A, B], i = √−1 (3.16)

Finally, the nonvanishing equal-time commutators of the theory in Case A, i.e.,
in the gaugeA0 = 0 and A1 = 0, are obtained as follows (Kulshreshtha, 1998;
Kulshreshtha and Kulshreshtha, 1998; Kulshreshthaet al., 1993a–c, 1994a–d,
1995):

[8(Ex, t),5(Ey, t)] = i δ(Ex − Ey) (3.17a)

[8∗(Ex, t),5∗(Ey, t)] = i δ(Ex − Ey) (3.17b)

[ A2(Ex, t), E2(Ey, t)] = i δ(Ex − Ey) (3.17c)

[ A1(Ex, t), E1(Ey, t)] = 2i δ(Ex − Ey) (3.17d)

[8(Ex, t), E1(Ey, t)] = −1

2
e8ε(x1− y1)δ(x2− y2) (3.17e)

[8∗(Ex, t), E1(Ey, t)] = 1

2
e8∗ε(x1− y1)δ(x2− y2) (3.17f)

[ A2(Ex, t), E1(Ey, t)] = −1

2
i ε(x1− y1)δ′(x2− y2) (3.17g)
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[5(Ex, t), E1(Ey, t)] = 1

2
e5ε(x1− y1)δ(x2− y2) (3.17h)

whereε(x1− y1) is a step function defined as

ε(x1− y1) :=
{
+1, (x1− y1) > 0

−1, (x1− y1) < 0
(3.18)

The nonvanishing equal-time commutators of the theory in Case B, i.e., in the
gaugeA0 = 0 and∂1A1 = 0, are seen to be identical with those of Case A as they
should, and are given by (3.17). This is not surprising in view of the fact that the
gaugesA1 = 0 and∂1A1 = 0 conceptually mean the same thing.

For later use, for considering the BRST formulation of the theory we convert
the total Hamiltonian density into the first-order Lagrangian densityL10:

L10 := 5(∂08)+5∗(∂08
∗)+50(∂0A0)+ E1(∂0A1)

+ E2(∂0A2)+5u(∂0u)−HT

= 5(∂08)+5∗(∂08
∗)+ E1(∂0A1)+ E2(∂0A2)+5u(∂0u)

− 1

2
e2
(
E2

1 + E2
2

)− e2
(
A2

1+ A2
2

)
8∗8− (∂18

∗)(∂18)

− (∂28
∗)(∂28)− ie(∂18

∗)A18− ie(∂28
∗)A28

+ ieA18
∗(∂18)+ ieA28

∗(∂28)− 1

2e2
F2

12− V(|8|2) (3.19)

In (3.19), the term50(∂0A0− u) drops out in view of the Hamilton’s equation
(3.9e).

4. THE BRST FORMULATION

4.1. The BRST Invariance

For the BRST formulation of the Nielsen–Olesen model, we rewrite the the-
ory as a quantum system that possesses the generalized gauge invariance called
BRST symmetry. For this, we first enlarge the Hilbert space of the gauge-invariant
Nielsen–Olesen model and replace the notion of gauge transformation, which shifts
operators byc-number functions, by a BRST transformation, which mixes opera-
tors with Bose and Fermi statistics, we then introduce new anticommuting variables
candc̄ (Grassman numbers on the classical level and operators in the quantized the-
ory) and a commuting variableb such that (Becchiet al., 1974; Henneaux, 1985;
Kulshreshtha, 1998; Kulshreshtha and Kulshreshtha, 1998; Kulshreshthaet al.,
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1993a–c, 1994a–d, 1995; Nemeschanskyet al., 1988; Tyutin, xxxx)

δ̂A0 = ∂0c, δ̂A1 = −∂1c, δ̂A2 = −∂2c, δ̂u = −∂0∂0c, δ̂8 = ic8 (4.1a)

δ̂5 = [−ecA08
∗ − ic ∂08

∗ + i (e− 1)8∗ ∂0c], δ̂5u = 0, δ̂8∗ = −ic8∗

(4.1b)

δ̂c = 0, δ̂c̄ = b, δ̂b = 0 (4.1c)

δ̂50 = δ̂E1 = δ̂E2 = 0, δ̂5∗ = −ecA08+ ic ∂08− i (e− 1)8∂0c (4.1d)

with the propertŷδ
2 = 0. We now define a BRST-invariant function of the dynami-

cal variables to be a functionf (A0, A1, A2, u,8,8∗, c, c̄, b,5,5∗,50,5u, E1,
E2,5c,5c̄,5b) such that δ̂ f = 0 (Becchi et al., 1974; Henneaux, 1985;
Kulshreshtha, 1998; Kulshreshtha and Kulshreshtha, 1998; Kulshreshthaet al.,
1993a–c, 1994a–d, 1995; Nemeschanskyet al., 1988; Tyutin).

4.2. Gauge Fixing in the BRST Formalism

Performing gauge fixing in the BRST formalism implies adding to the first-
order Lagrangian densityL10, a trivial BRST-invariant function (Becchiet al.,
1974; Henneaux, 1985; Kulshreshtha, 1998; Kulshreshtha and Kulshreshtha, 1998;
Kulshreshthaet al., 1993a–c, 1994a–d, 1995; Nemeschanskyet al., 1988; Tyutin,
xxxx). We thus write the quantum Lagrangian density (taking, e.g., a trivial BRST-
invariant function) as follows (Becchiet al., 1974; Henneaux, 1985; Kulshreshtha,
1998; Kulshreshtha and Kulshreshtha, 1998; Kulshreshthaet al., 1993a–c,
1994a–d, 1995; Nemeschanskyet al., 1988; Tyutin):

LBRST= L10− δ̂
[
c̄

(
∂0A0+ 1

2
b

)]
(4.2a)

= 5(∂08)+5∗(∂08
∗)+ E1(∂0A1)+ E2(∂0A2)+5u(∂0u)

− 1

2
e2
(
E2

1 + E2
2

)− e2
(
A2

1A2
2

)
8∗8− (∂18

∗)(∂18)− (∂28
∗)(∂28)

− ie(∂18
∗)A18− ie(∂28

∗)A28+ ieA18
∗(∂18)

+ ieA28
∗(∂28)− 1

2e2
F2

12− V(|8|2)

+ δ̂
[
c̄

(
−∂0A0− 1

2
b

)]
(4.2b)

The last term in the above equation (Eq. 4.2) is the extra BRST-invariant, gauge-
fixing term. Using the definition of̂δ we can rewriteL BRST (with one integration
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by parts):

L BRST= 5(∂08)+5∗(∂08
∗)+ E1(∂0A1)+ E2(∂0A2)+5u(∂0u)

− 1

2
e2
(
E2

1 + E2
2

)− e2
(
A2

1+ A2
2

)
8∗8− (∂18

∗)(∂18)− (∂28
∗)(∂28)

− ie(∂18
∗)A18− 1

2e2
F2

12− ie(∂28
∗)A28+ ieA18

∗(∂18)

+ ieA28
∗(∂28)− V(|8|2)− b(∂0A0)− 1

2
b2+ (∂0c̄)(∂0c) (4.3)

Proceeding classically, the Euler–Lagrange equation forb reads (Becchiet al.,
1974; Henneaux, 1985; Kulshreshtha, 1998; Kulshreshtha and Kulshreshtha,
1998; Kulshreshthaet al., 1993a–c, 1994a–d, 1995; Nemeschanskyet al., 1988;
Tyutin)

−b = ∂0A0 (4.4)

The requirement̂δb = 0 (cf. 4.1c)) then implies

−δ̂b = δ̂(∂0A0) (4.5)

which in turn implies

∂0(∂0c) = 0 (4.6)

The above equation is also an Euler–Langrange equation obtained by the variation
of LBRSTwith respect tōc. We now define the bosonic momenta in the usual way so
that (Becchiet al., 1974; Henneaux, 1985; Kulshreshtha, 1998; Kulshreshtha and
Kulshreshtha, 1998; Kulshreshthaet al., 1993a–c, 1994a–d, 1995; Nemeschansky
et al., 1988; Tyutin)

50 := ∂LBRST

∂(∂0A0)
= −b (4.7)

The fermionic momenta are, however, defined using the directional derivatives such
that (Becchiet al., 1974; Henneaux, 1985; Kulshreshtha, 1998; Kulshreshtha and
Kulshreshtha, 1998; Kulshreshthaet al., 1993a–c, 1994a–d, 1995; Nemeschansky
et al., 1988; Tyutin)

5c := LBRST

←
∂

δ(∂0c)
= ∂0c̄; 5c̄ :=

→
∂

δ(∂0c̄)
LBRST= ∂0c (4.8)

implying that the variable canonically conjugate toc is (∂0c̄) and the variable
conjugate tōc is (∂0c). In constructing the Hamiltonian densityHBRST from the
Langrangian density in the usual way, one has to keep in mind that the former has
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to be Hermitian. Accordingly, we have

HBRST= 50(∂0A0)+5∗(∂08
∗)+5(∂08)+5u(∂0u)+ E1(∂0A1)+ E2(∂0A2)

+5c(∂0c)+5c̄(∂0c̄)− LBRST

= 1

2
e2
(
E2

1 + E2
2

)+ e2
(
A2

1+ A2
2

)
8∗8+ (∂18

∗)(∂18)+ (∂28
∗)(∂28)

+ ie(∂18
∗)A18+ ie(∂28

∗)A28− ieA18
∗(∂18)

− ieA28
∗(∂28)+ 1

2e2
F2

12+ V(|8|2)− 1

2
52

0+5c5c̄ (4.9)

We can check the consistency of (4.8) with (4.9) by looking at Hamilton’s equa-
tions for the fermionic variables, i.e. (Kulshreshtha, 1998; Kulshreshtha and
Kulshreshtha, 1998; Kulshreshthaet al., 1993a–c, 1994a–d, 1995)

∂0c =
→
∂

∂5c
HBRST, ∂0c̄ = HBRST

←
∂

∂5c̄
(4.10)

Thus we see that

∂0c =
→
∂

∂5c
HBRST= 5c̄, ∂0c̄ = HBRST

←
∂

∂5c̄
= 5c (4.11)

is in agreement with (4.8). For the operatorsc, c̄, ∂0c, and∂0c̄, one needs to specify
the anticommutation relations of∂0c with c̄ or of ∂0c̄ with c, but not ofc with c̄.
In general,c andc̄ are independent canonical variables and one assumes that

{5c,5c̄} = {c̄, c} = 0, ∂0{c̄, c} = 0 (4.12a)

{∂0c̄, c} = −{∂0c, c̄} (4.12b)

where{ , } means an anticommutator. We thus see that the anticommutators in
(4.12b) are nontrivial and need to be fixed. In order to fix these, we require thatc
satisfy the Heisenberg equation

[c,HBRST] = i ∂0c (4.13)

and using the propertyc2 = c̄2 = 0, one obtains

[c,HBRST] = {∂0c̄, c} ∂0c (4.14)

Equations (4.12)–(4.14) then imply

{∂0c̄, c} = −{∂0c, c̄} = i (4.15)

The minus sign in the above equation is nontrivial and implies the existence of
states with negative norm in the space of state vectors of the theory.
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4.3. The BRST Charge Operator

The BRST charge operatorQ is the generator of the BRST transformation
(4.1). It is nilpotent and satisfiesQ2 = 0. It mixes operators that satisfy Bose
and Fermi statistics. According to its conventional definition, its commutators
with Bose operators and its anticommutators with Fermi operators for the present
theory satisfy the following:

[8, Q] = −iec8, [A0, Q] = ∂0c, [A1, Q] = −∂1c (4.16a)

[5, Q] = iec5, [5∗, Q] = −iec5∗ (4.16b)

{c̄, Q} = −∂1c, [8∗0, Q] = iec8∗, [A2, Q] = −∂2c (4.16c)

{∂0c̄, Q} = [ie(5∗8∗ −58)− ∂1E1− ∂2E2] (4.16d)

All other commutators and anticommutators involvingQ vanish. In view of (4.16),
the BRST charge operator for the present theory can be written as

Q =
∫

d2x [ic{∂1E1+ ∂2E2− ie(5∗8∗ −58)} − i (∂0c)50] (4.17)

This equation implies that the set of states satisfying the condition

50|ψ〉 = 0 (4.18a)

[∂1E1+ ∂2E2− ie(5∗8∗ −58)]|ψ〉 = 0 (4.18b)

belongs to the dynamically stable subspace of states|ψ〉 satisfyingQ|ψ〉 = 0, i.e.,
it belongs to the set of BRST-invariant states.

In order to understand the condition needed for recovering the physical
states of the theory, we write the operatorsc and c̄ in terms of fermionic anni-
hilation and creation operators. For this purpose we consider Eq. (4.6) (namely,
∂0(∂0c) = 0). The solution of this equation gives the Heisenberg operatorc(t) (and
correspondinglyc̄ (t)) as (Becchiet al., 1974; Henneaux, 1985; Kulshreshtha,
1998; Kulshreshtha and Kulshreshtha, 1998; Kulshreshthaet al., 1993a–c,
1994a–d, 1995; Nemeschanskyet al., 1988; Tyutin).

c(t) = Gt + F, c̄(t) = G†t + F† (4.19)

which at the timet = 0 imply

c ≡ c(0)= F, c̄ ≡ c̄(0)= F† (4.20a)

∂0c ≡ ∂0c(0)= G, ∂0c̄ ≡ ∂0c̄(0)= G† (4.20b)

By imposing the conditions

c2 = c−2 = {c̄, c} = {∂0c̄, ∂0c} = 0 (4.21a)

{∂0c̄, c} = i = −{∂0c, c̄} (4.21b)
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one then obtains

F2 = F†2 = {F†, F} = {G†, G} = 0 (4.22)

{G†, F} = −{G, F†} = i (4.23)

We now let|0〉 denote the fermionic vacuum for which

G|0〉 = F |0〉 = 0 (4.24)

Defining|0〉 to have norm one, (4.23) implies

〈0|FG†|0〉 = i , 〈0|GF†|0〉 = −i (4.25)

so that

G†|0〉 6= 0, F†|0〉 6= 0 (4.26)

The theory is thus seen to posses negative norm states in the fermionic sector.
The existence of these negative norm states as free states of the fermionic part of
HBRST is, however, irrelevant to the existence of physical states in the orthogonal
subspace of the Hilbert space.

In terms of annihilation and creation operators the Hamiltonian density is

HBRST= 1

2
e2
(
E2

1 + E2
2

)+ e2
(
A2

1+ A2
2

)
8∗8+ (∂18

∗)(∂18)+ (∂28
∗)(∂28)

+ ie(∂18
∗)A18+ ie(∂28

∗)A28− ie(A18
∗)(∂18)− ie(A28

∗)(∂28)

+ 1

2e2
F2

12+ V(|8|2)− 1

2
52

0+ G†G (4.27)

and the BRST charge operatorQ is

Q =
∫

d2x [i F {∂1E1+ ∂2E2− ie(5∗8∗ −58)} − iG50] (4.28)

Now becauseQ|ψ〉 = 0, the set of states annihilated byQ contains not only the
set of states for which (4.18) holds, but also additional states for which

G|ψ〉 = F |ψ〉 = 0 (4.29a)

5|ψ〉 6= 0 (4.29b)

[∂1E1+ ∂2E2− ie(5∗8∗ −58)]|ψ〉 6= 0 (4.29c)

The Hamiltonian is, however, also invariant under the anti-BRST transformations
(in which the role ofc and−c̄ get interchanged) given by

¯̂δA0 = ∂0c̄, ¯̂δA1 = ∂1c̄, ¯̂δA2 = ∂2c̄, ¯̂δ8 = −i c̄8, ¯̂δ8∗ = i c̄8∗, (4.30a)

¯̂δu = ∂0∂0c̄, ¯̂δ5 = ec̄A08
∗ + i c̄∂08

∗ − i (e− 1)8∗ ∂0c̄] (4.30b)
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¯̂δ5∗ = ecA08− i c̄∂08+ i (e− 1)8∂0c̄, ¯̂δ5u = 0, ¯̂δ50 = 0 (4.30c)

¯̂δc̄ = 0, ¯̂δc = −b, ¯̂δb= 0, ¯̂δE1 = ¯̂δE2 = 0 (4.30d)

with generator or anti-BRST charge

Q̄ =
∫

d2x [−i c̄{∂1E1+ ∂2E2+ ie(58−5∗8∗)} + i (∂0c̄)50] (4.31a)

=
∫

d2x [−i F †{∂1E1+ ∂2E2− ie(5∗8∗ −58)} + iG†50] (4.31b)

we also have

[Q, HBRST] = [ Q̄, HBRST] = 0 (4.32a)

HBRST=
∫

dxHBRST (4.32b)

and we further impose the dual condition that bothQ and Q̄ annihilate physical
states, implying that:

Q|ψ〉 = 0 (4.33a)

Q̄|ψ〉 = 0 (4.33b)

The states for which (4.18) hold, satisfy both the above conditions (4.33a) and
(4.33b), and in fact are the only states satisfying both of these conditions since,
although with (4.22) and (4.23)

G†G = −GG† (4.34)

there are no states of this operator withG†|0〉 = 0 andF†|0〉 = 0 (cf. Eq. (4.26)),
and hence no free eigenstates of the fermionic part ofHBRST which are annihilated
by each ofG, G†, F, F†. Thus the only states satisfying (4.33) are those satisfying
the constraints (3.5) and (3.11).

Further, the states for which (4.18) holds, satisfy both of the conditions (4.33a)
and (4.33b), and in fact are the only states satisfying both of these conditions,
because in view of (4.21), one cannot have simultaneouslyc, ∂0c, and c̄, ∂0c̄,
applied to|ψ〉 to give zero. Thus the only states satisfying (4.33) are those that
satisfy the constraints of the theory [Eqs. (3.5) and (3.11)], and they belong to
the set of BRST-invariant and anti-BRST-invariant states. One can understand the
above point in terms of fermionic annihilation and creation operators as follows:
The conditionQ|ψ〉 = 0 implies that the set of states annihilated byQ contains
not only the states for which (4.18) holds, but also additional states for which
(4.29) holds. However,̄Q|ψ〉 = 0 guarantees that the set of states annihilated by
Q̄ contains only the states for which (4.18) holds, simply becauseG†|ψ〉 6= 0
andF†|ψ〉 6= 0. Thus, in this alternative way also we see that the states satisfying
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Q|ψ〉 = Q̄|ψ〉 = 0 (i.e., satisfying (4.33)) are only those that satisfy the constraints
of the theory [Eqs. (3.5) and (3.11)] and also that these states belong to the set of
BRST-invariant and anti-BRST-invariant states.
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